Chemical Pigments Experiment

Key Stage 4

Scheme of work unit:	C2	Rocks and Metals
Intended learning:	C2a	Provide a visual aid to show pupils a chemical reaction and then get them to write out the reaction using word equations and represent the reaction by writing balanced equations using chemical symbols.

Introduction notes:

- A pigment is a small particle that does not dissolve in water.
- Pigments can be natural or man-made.
- Malachite Green is a chemical that is primarily used as a dye.
- When diluted, it can be used as a topical antiseptic or to treat parasites, fungal infections, and bacterial infections in fish and fish eggs. It is also used as a bacteriological stain.
- Prussian Blue is a dark blue pigment used in paints and formerly in blueprints.
- Despite being one of the oldest known synthetic compounds, the composition of Prussian Blue was uncertain until recently. The precise identification was complicated by 3 factors:
- (i) Prussian Blue is extremely insoluble but also tends to form colloids (a suspension of particles in a liquid).
- (ii) Traditional syntheses tend to afford impure compositions.
- (iii) Even pure Prussian Blue is structurally complex, defying routine crystallographic analysis.
- The chemical formula of Prussian Blue is $Fe_7(CN_{18})(H_2O)_x$

Resources required:

- Burettes
- Funnels
- Filter papers
- Watch glasses
- Conical flasks
- Iron(III) chloride FeCl₃
- Potassium ferrocyanide K₄[Fe(CN)₆]
- Copper sulfate CuSO₄.5H₂O
- Sodium carbonate Na₂CO₃
- Cobalt chloride CoCl₂.6H₂O
- Sodium phosphate Na₂HPO₄

Practical notes:

The chemicals should not be ingested. Cobalt chloride is a listed carcinogen by inhalation, and therefore this solution should be prepared in advance. This is made by dissolving 6g $CoCl_2.6H_2O$ per 250ml of water. Gloves should be worn to prevent skin contact. Safety glasses and lab coats should be worn at all times.

Iron chloride – R22 38 41, S26 39 Potassium ferrocyanide – R32, S22 24/25 Prussian blue – S22 24/25 Copper sulfate – R22 36/28 50/53, S22 60 61 Sodium carbonate – R36, S22 26 Copper carbonate – R22 36/37/38, S26 36 Cobalt chloride – R49 22 42/43 50/53, S53 22 45 60 61 Disodium hydrogen phosphate – Cobalt phosphate – R22 36/37/38 40 42/43, S26 36

Answers:

- 1. Iron, Copper and Cobalt
- 2. Effervescence/fizzing
- 3. Carbon dioxide gas
- 4. **Prussian Blue**: $3K_4[Fe(CN)_6] + 4FeCl_3 \rightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$ **Malachite Green**: $2CuSO_4.5H_2O + Na_2CO_3 \rightarrow Cu_2CO_3(OH)_2 + 2NaSO_4 + 3H_2O + H_2$ **Cobalt Violet**: $3CoCl_2.6H_2O + 2Na_2HPO_4 \rightarrow Co_3(PO_4)_2 + 4NaCl + 2HCl + 6H_2O$